code-talk/code_chat copy

210 lines
5.2 KiB
Plaintext
Raw Normal View History

2024-04-19 02:37:11 +00:00
#!/usr/bin/env python
#from langchain.embeddings import FastEmbedEmbeddings
#from langchain.schema.output_parser import StrOutputParser
from langchain.document_loaders import UnstructuredFileLoader, WebBaseLoader, YoutubeLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
#from langchain.schema.runnable import RunnablePassthrough
#from langchain.prompts import PromptTemplate
#from langchain.schema.document import Document
from langchain.vectorstores.utils import filter_complex_metadata
#from langchain_community.embeddings import OllamaEmbeddings
#import mimetypes
import os
import json
import requests
#from pathlib import Path
from rich.markdown import Markdown
from rich.console import Console
import re
import sys
from urllib.parse import urlparse, parse_qs
#from youtube_transcript_api import YouTubeTranscriptApi
import nltk
from tqdm import tqdm
from markdown_pdf import Section, MarkdownPdf
pdf = MarkdownPdf(toc_level=2)
file_input = sys.argv[1]
filename, file_extension = os.path.splitext(file_input)
title = os.path.basename(filename).replace(file_extension, '')
pdf.add_section(Section(f"# {title}\n", toc=True))
model = "dolphin-mistral:latest"
#model = "mistral:latest"
vector_store = None
retriever = None
chain = None
docs = None
def generate_text(model, prompt, system = ""):
url = "http://localhost:11434/api/generate"
data = {
"model": model,
"prompt": prompt,
"system": system,
"stream": False,
"options": {
"temperature": 0.6,
}
}
response = requests.post(url, json=data)
text = json.loads(response.text)
return text["response"]
def isyoutubevideo(youtube_url):
parsed_url = urlparse(youtube_url)
query_params = parse_qs(parsed_url.query)
if 'v' in query_params:
return True
elif "youtu.be" in parsed_url:
return True
else:
return False
def is_url(string):
pattern = r"^https?://"
return bool(re.search(pattern, string))
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=100)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4096, chunk_overlap=100)
# Checking if url or if file path
if is_url(file_input):
# See if youtube link
if isyoutubevideo(file_input) == True:
print("Loading youtube video...")
# Prepare youtube url for transcript extraction
#parsed_url = urlparse(file_input)
#query_params = parse_qs(parsed_url.query)
# Get youtube video id
#video_id = query_params['v'][0]
# Load for emmbeddings
video_id = file_input[-11:]
docs = YoutubeLoader(video_id).load()
else:
print("Loading url...")
# Extract and load webpage text
docs = WebBaseLoader(file_input).load()
# Prepare text
docs = text_splitter.split_documents(docs)
docs = filter_complex_metadata(docs)
else:
# Load File
try:
docs = UnstructuredFileLoader(file_input).load()
except:
docs = TextLoader(file_input).load()
# Prepare file
docs = text_splitter.split_documents(docs)
docs = filter_complex_metadata(docs)
outline = ""
pre_summery = ""
print("\nNumber of Chunks: ", len(docs))
t = ""
for a in docs:
t += a.page_content
nltk_tokens = nltk.word_tokenize(t)
print("Number of Tokens: " + str(len(nltk_tokens)) + "\n")
bar = tqdm(desc="Loading…", ascii=False, ncols=100, total=len(docs))
count = 0
for x in docs:
count += 1
bar.update()
context = str(x.page_content)
chunk_text = context
system_prompt = """
You are a professional code summarizer. You will be be given a SQL query in chunk section.
Take each chunk and create a very short concise summery. The chunk will be under the # CHUNK heading. Only output the summery.
Do not under any circumstance output the # CHUNK section or any SQL code.
"""
prompt = f"""
# CHUNK
{chunk_text}
"""
## SUMMERY
#{outline}
#"""
outline = generate_text(model, prompt, system_prompt)
outline = outline.replace("\n", " ")
pre_summery += "\n\n" + str(count) + ". " + outline
#print("\n\n\n")
#print(outline)
#print("\n\n\n")
#print("\n\n\n-----------------------------------------------------------------------------------\n\n\n")
#print(pre_summery)
bar.close()
nltk_tokens = nltk.word_tokenize(pre_summery)
print("\nNumber of Tokens: ", len(nltk_tokens))
#print(pre_summery)
system_prompt = "You are an expert summarizer. Your Job it to take all the individual sections under each bullet point. Make sure that the summary is long and detailed. Do not mention anything about sections or chunks and only summarize in paragraph form. Never let your summary's contain outlines or built points"
prompt = f"""
Here are a bunch of bulit points. Please summerize them:
{pre_summery}
"""
final_summery = generate_text(model, prompt, system_prompt)
#print("\n\n\n------------------------------Final Summery-----------------------------------------------\n\n\n")
#print(final_summery)
print("Done")
pdf.add_section(Section(f"## Basic Overview\n{final_summery}\n\n"))
pdf.add_section(Section(f"## Code Outline\n{pre_summery}\n\n"))
pdf.meta["title"] = title
pdf.meta["author"] = "locker98"
pdf.save(f"{title}.pdf")